由于新兴的深度神经网络(DNN)模型的规模继续增大,使用大型GPU集群培训DNN是实现可接受培训时间的基本要求。在本文中,我们考虑了集群大小的未来增加的情况将导致全局批量大小用于培训模型以达到基本限制:超出某个点,更大的全球批量尺寸会导致样品效率降低,总体上升准确性的时间。因此,为了实现培训性能的进一步改进,我们必须考虑“强大的缩放”策略,该策略保持全局批量大小常量,并将较小的批次分配给每个GPU。不幸的是,这使得能够有效地使用群集资源。我们呈现DeepPool,通过两个关键思想解决这种效率挑战的系统。首先,突发并行性将大量GPU分配给突发中的前景作业,以利用整个层的并行性的不均匀性。其次,GPU多路复用优先考虑前台培训工作的吞吐量,而背景培训作业包装以回收未充分利用的GPU资源,从而提高集群范围利用率。这两个想法在一起使DeepPool能够在群集刻度大的单一任务中通过标准数据并行度进行2.2 - 2.4倍的完整性。
translated by 谷歌翻译
非负矩阵分解(NMF)是一种有价值的矩阵分解技术,其产生了数据集的“基于部分”分解。Wi-Fi用户数是智能和连接城市环境中的群体运动的隐私保留指标。在本文中,我们将NMF应用于博尔德校区从科罗拉多大学嵌入到Wi-Fi用户数数据的新矩阵,以便自动识别智能和连接的基础设施环境中的人类运动模式。
translated by 谷歌翻译
学习排名 - 制作特定于查询的项目的排名列表以及一组监督项目 - 是一个普遍兴趣的问题。我们认为的设置是没有分析描述构成良好排名的设置。取而代之的是,我们有一个包含(目标项目,有趣的项目集)对的表示和监督信息的集合。我们在仿真中进行了分析证明,在实际数据示例中,当监督与“这几个相似的项目相似”时,通过使用整数线性程序组合表示来进行排名是有效的。尽管这项提名任务是相当普遍的,但对于特异性,我们从图表中的顶点提名的角度介绍了我们的方法论。本文描述的方法是模型不可知论。
translated by 谷歌翻译
The automated segmentation and tracking of macrophages during their migration are challenging tasks due to their dynamically changing shapes and motions. This paper proposes a new algorithm to achieve automatic cell tracking in time-lapse microscopy macrophage data. First, we design a segmentation method employing space-time filtering, local Otsu's thresholding, and the SUBSURF (subjective surface segmentation) method. Next, the partial trajectories for cells overlapping in the temporal direction are extracted in the segmented images. Finally, the extracted trajectories are linked by considering their direction of movement. The segmented images and the obtained trajectories from the proposed method are compared with those of the semi-automatic segmentation and manual tracking. The proposed tracking achieved 97.4% of accuracy for macrophage data under challenging situations, feeble fluorescent intensity, irregular shapes, and motion of macrophages. We expect that the automatically extracted trajectories of macrophages can provide pieces of evidence of how macrophages migrate depending on their polarization modes in the situation, such as during wound healing.
translated by 谷歌翻译
Data-centric AI has shed light on the significance of data within the machine learning (ML) pipeline. Acknowledging its importance, various research and policies are suggested by academia, industry, and government departments. Although the capability of utilizing existing data is essential, the capability to build a dataset has become more important than ever. In consideration of this trend, we propose a "Data Management Operation and Recipes" that will guide the industry regardless of the task or domain. In other words, this paper presents the concept of DMOps derived from real-world experience. By offering a baseline for building data, we want to help the industry streamline its data operation optimally.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译
This paper proposes a new regularization algorithm referred to as macro-block dropout. The overfitting issue has been a difficult problem in training large neural network models. The dropout technique has proven to be simple yet very effective for regularization by preventing complex co-adaptations during training. In our work, we define a macro-block that contains a large number of units from the input to a Recurrent Neural Network (RNN). Rather than applying dropout to each unit, we apply random dropout to each macro-block. This algorithm has the effect of applying different drop out rates for each layer even if we keep a constant average dropout rate, which has better regularization effects. In our experiments using Recurrent Neural Network-Transducer (RNN-T), this algorithm shows relatively 4.30 % and 6.13 % Word Error Rates (WERs) improvement over the conventional dropout on LibriSpeech test-clean and test-other. With an Attention-based Encoder-Decoder (AED) model, this algorithm shows relatively 4.36 % and 5.85 % WERs improvement over the conventional dropout on the same test sets.
translated by 谷歌翻译
Affect understanding capability is essential for social robots to autonomously interact with a group of users in an intuitive and reciprocal way. However, the challenge of multi-person affect understanding comes from not only the accurate perception of each user's affective state (e.g., engagement) but also the recognition of the affect interplay between the members (e.g., joint engagement) that presents as complex, but subtle, nonverbal exchanges between them. Here we present a novel hybrid framework for identifying a parent-child dyad's joint engagement by combining a deep learning framework with various video augmentation techniques. Using a dataset of parent-child dyads reading storybooks together with a social robot at home, we first train RGB frame- and skeleton-based joint engagement recognition models with four video augmentation techniques (General Aug, DeepFake, CutOut, and Mixed) applied datasets to improve joint engagement classification performance. Second, we demonstrate experimental results on the use of trained models in the robot-parent-child interaction context. Third, we introduce a behavior-based metric for evaluating the learned representation of the models to investigate the model interpretability when recognizing joint engagement. This work serves as the first step toward fully unlocking the potential of end-to-end video understanding models pre-trained on large public datasets and augmented with data augmentation and visualization techniques for affect recognition in the multi-person human-robot interaction in the wild.
translated by 谷歌翻译
Training agents via off-policy deep reinforcement learning (RL) requires a large memory, named replay memory, that stores past experiences used for learning. These experiences are sampled, uniformly or non-uniformly, to create the batches used for training. When calculating the loss function, off-policy algorithms assume that all samples are of the same importance. In this paper, we hypothesize that training can be enhanced by assigning different importance for each experience based on their temporal-difference (TD) error directly in the training objective. We propose a novel method that introduces a weighting factor for each experience when calculating the loss function at the learning stage. In addition to improving convergence speed when used with uniform sampling, the method can be combined with prioritization methods for non-uniform sampling. Combining the proposed method with prioritization methods improves sampling efficiency while increasing the performance of TD-based off-policy RL algorithms. The effectiveness of the proposed method is demonstrated by experiments in six environments of the OpenAI Gym suite. The experimental results demonstrate that the proposed method achieves a 33%~76% reduction of convergence speed in three environments and an 11% increase in returns and a 3%~10% increase in success rate for other three environments.
translated by 谷歌翻译
Understanding the relationship between structure and sentiment is essential in highlighting future operations with online social networks. More specifically, within popular conversation on Twitter. This paper provides a development on the relationship between the two variables: structure, defined as the composition of a directed network, and sentiment, a quantified value of the positive/negative connotations of a conversation. We highlight thread sentiment to be inversely proportional to the strength and connectivity of a network. The second portion of this paper highlights differences in query types, specifically how the aforementioned behavior differs within four key query types. This paper focuses on topical, event-based, geographic, and individual queries as orientations which have differing behavior. Using cross-query analysis, we see that the relationship between structure and sentiment, though still inversely proportional, differs greatly across query types. We find this relationship to be the most clear within the individual queries and the least prevalent within the event-based queries. This paper provides a sociological progression in our understanding of opinion and networks, while providing a methodological advancement for future studies on similar subjects.
translated by 谷歌翻译